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Abstract. A massive spin one vector field is quantized in the presence of an external potential, 
with source linear in the vector field, to provide an illustration of the aspects of a quantum 
theory in an external potential, which are reflections of the causal nature of the corresponding 
classical theory. In the examples considered, the S operator of the quantum theory is found 
to be Lorentz invariant or not, according as the corresponding classical theory is causal or 
not. The normal dependence of the interaction hamiltonian, and the applicability of the 
generalized Matthews’ rule are also discussed. 

1. Introduction 

The problem of determining the causal nature of the propagation of a classical field 
in an external potential was first studied by Vel0 and Zwanziger (1969a,b, 1971). It has 
been discussed further, in the same spirit, by Vel0 (1972), Shamaly and Capri (1972a,b) 
and Jenkins (1972). In these papers, particular examples of relativistic wave equations 
are considered in the presence of various external potentials. In some instances these 
wave equations are found to possess solutions which propagate acausally, or even fail 
to propagate. 

Having noted the above difficulties at the classical level, it is interesting to quantize 
these theories and explore how their causal nature is reflected at the quantum level. 
Some work along these lines has been done by Johnson and Sudarshan (1961) and 
Schroer e t  a1 (1970). Now Schroer et a1 noted, following Capri (1969), that a discussion 
of a quantized Aefd in an external potential, with the source linear in the field, is reducible 
to a discussion of the corresponding classical problem. In this case, causality or 
acausality, at the classical level, are reflected in the validity or breakdown of micro- 
causality at the quantum level. 

In the present paper, the interaction of a quantized massive spin one vector field 
with an external potential, the source being nonderivative and linear in the vector field, 
is discussed. The results are used to illustrate further aspects of theories, quantized in 
the presence of an external potential, which are reflections of the causal nature of the 
corresponding classical theories. 

The plan ofthe paper is as follows. In 9 2 the interaction hamiltonian in the interaction 
picture is calculated for the interacting vector field, and the perturbation series for the 
S operator is examined. In 6 3 the results of 0 2 are discussed and some further results 
quoted. 
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2. Interacting vector field 

The most general form for the equation of a massive spin one vector field interacting 
with an external potential, the source being nonderivative and linear in the vector field, 
is given byf 

(1) 

where the potential T,,(x) is a second rank tensor density. 
The method of Takahashi and Umezawa (see eg Takahashi 1969) is adhered to in 

the calculation of the interaction hamiltonian in the interaction picture. Firstly the field 
equation (1) is solved by the method of the Green function. Thus 

(8’ + m2) V,(x) - duo“’, &(x) = T,,(x) V(x)  

V,(X) = V~,(X) - d, j ( 2 )  Ke‘(x - x’)T”(x’) V,(X’) d4x’ ( 2 )  ra 
where the Klein-Gordon divisor of the vector field is given by 

and 

with 6(x,) the unit step function and A(x) the usual solution of the Klein-Gordon 
equation. 

An auxiliary field is now introduced, and is defined by 

V,(x, Q) = Vo,(x) - f d F j ( 8 )  A(x - x’)TAP(x’) V,(x‘) d4x’ ( 5 )  
- m  

where Q is a spacelike surface, not necessarily through x. This auxiliary field satisfies 
free-field commutation relations, namely, 

Next, for x on the spacelike surface a, denoted by X ~ Q ,  the ekpression (5) can, with the 
aid of the unit step function, be written with the integration range extending from - CO 

to + CO. The resulting expression together with (2) gives 
m 

V,(x) = V,(xla)+ [6(x,-xb), d,,(d)] A(x-x‘)TiP(x’)Vp(x’) d4x‘. (7) 
-00 

Now if n, is the unit normal to the spacelike surface Q, then the identities 

[@xo - xb), g,,] 4 x  - x’) = 0 

[&x0 - xb), d,d,] A(x - x’) = npnv a4(x - x’) 

together with (3) may be used to reduce (7) to the following form : 

n nj. 
(8) V,(X) = V,(XlO) +* T i P ( X )  P(x).  

t Heisenberg picture field operators are in bold face type, whilst their interaction picture counterparts are 
in light face type. The metric used is g,, = diag(1, - 1, - 1, - I), d, = didxu and the usual summation conven- 
tion is assumed for Greek indices. 
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The next step is to solve this equation for the Heisenberg picture field in terms of the 
auxiliary field. Thus (8) may be easily seen to be satisfied by 

To calculate the interaction hamiltonian in the interaction picture, the following com- 
mutation relations are noted : 

(10) 

Then, when (9) has been used to express VJx'), on the right-hand side of (lo), in terms 
of V,(x'la), the commutation relations (6 )  give the following form for , z n l ( n ,  xla): 

[ VJx, a), &nl(n, x'[ a)] = - i dJ2) A(x - x') T"O(x') V,(x'). 

The interaction hamiltonian in the interaction picture z n l ( n ,  x) is finally obtained from 
(1 1) by the replacement of the auxiliary field V,(xJo) by its interaction picture counterpart 
V,(x) etc. 

z n l ( n ,  x), thus obtained, may, through Dyson's formula, be used to write the 
perturbation series for the S operator as 

T(%,,,(n,x))d4x+- T(zn , (n ,  x)qn1(n, x')) d4x d4x' + . 

Now denoting V~(x)TvV(x)Vv(x) symbolically by Vt . T .  V(x) etc, and using Wick's 
theorem, here interpreted in a form, which, on defining O(0) = $,is equivalent to assuming 
that the interaction hamiltonian is symmetrized in the field operators V,(x) and V$x) 
(see Kvitky and Mouton 1972), 

S =  - i  ( : V t . T . n ( x ) n . T .  V(x): 

a c m  + :v t .  T . n ( x ) n . T .  Q(x):)d4x--$ [ [ ( : V t .  T .  Vmt. T .  V(xJ 
J - a c  J - x ,  

+ : $'t. T .  V(x)Vt. T .  fi(x'): + :$'l. T .  $'(x)Vt. T .  V(x'): 

+ : Vt . T .  V ( x ) V m ( x ' ) :  + : h . T .  Vwt. T .  $(x'): 

+ : rl.t. T .  L!'(x)fit. T .  t (x ' ) : )d4xd4x'+ . .  

where terms of order higher than the second, and those not having noncovariant parts 
have been excluded. Next the identity, for the contraction of the vector field, 

1 
V m d ( x ' )  = - i d,,(a) Ac(x - x') - ?nPnv d4(x - x') 

should be noted, where 

A&) = O(xo)A+(x)-O(-xo) A-(x) 

with A *(x) being respectively the usual positive and negative frequency solutions of 
the Klein-Gordon equation. 
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Three cases are now distinguished : 

(i) n"nPqp(x) 5 0. 
(ii) n"nPT,&x) $ 0 and not proportional to nun,. 
(iii) nunPTg(x) = Il/(x)n"n, = Il/(x). Since n, is a unit vector. 
In case (i) the interaction hamiltonian reduces to 

1 
m2 X'!; , (~ ,X)  = V t .  T .  V ( x ) + - V ' .  T . n ( x ) o . T .  V ( X ) .  

Now on account ofthe identity n a n P q p ( x )  = 0 and the expression (13), for the contraction 
of the vector field, the noncovariant parts of the lst, 6th, 7th and 9th terms of (12) vanish 
identically ; whilst there is a cancellation of the noncovariant parts in the 2nd, 4th, 5th 
and 3rd, 8th terms of (12), separately. Thus to second order all the noncovariant parts 
of the S operator disappear, leaving it Lorentz invariant. The Lorentz invariance of the 
S operator in all orders of perturbation theory may be verified by a tedious combinatorial 
argument, which is omitted; and it is found that the effective interaction hamiltonian 

%::!(x) = -L&(x) = Vt  . T .  V ( X )  

may be used in conjunction with an effective propagator for the vector field, just com- 
prising the covariant part of (13), to generate the S operator for case (i). This is the 
generalized Matthews' rule (Matthews 1949, Takahashi 1969), which has been seen to 
be valid for case (i). 

In case (ii) there is no simplification of the form (1 1) for the interaction hamiltonian. 
Further, whilst the cancellation of the noncovariant parts in the 2nd, 4th and 5th terms 
of (12) still occurs in this case, the similar cancellation between the 3rd and 8th terms 
is not complete. In addition the lst, 6th, 7th and 9th terms now have nonvanishing 
noncovariant parts, which do not cancel amongst themselves. Thus in both first and 
second orders the S operator has noncovariant parts. The S operator is thus not a 
Lorentz invariant quantity, and the generalized Matthews' rule is violated. 

In case (iii) the interaction hamiltonian reduces to 

Vt . T .  n(x)  n . T .  V ( x )  
# ' ~ ~ ~ ) ( n ,  X )  = V' . T .  V ( X )  + 

m2 - Ic/(x) 
(14) 

On account of n"nBTap(x) = +(x) being independent of np, and the expression (13), for 
the vector field propagator, the lst, 6th, 7th and 9th terms of (12) contain no non- 
covariant parts. In addition, there is a cancellation between the noncovariant parts 
in the 2nd, 4th and 5th terms, and the 3rd and 8th terms, separately. However, as is 
evidenced by the identity 

a use of the effective interaction hamiltonian 

xE"%:(x) = - L g " , ( X )  = v+ . T .  V ( x )  

together with the covariant part of (13), as the effective vector field propagator, generates 
an S operator, which differs from that of case (iii) by a Lorentz invariant function of S4(0). 
A tedious combinatorial argument, which is omitted, may be used to extend this result 
to all orders of perturbation theory ; when it is seen that, whilst the S operator is Lorentz 
invariant. Matthews' rule is violated. 
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Finally it should be noted that Vel0 and Zwanziger (1969.b) have shown, at the 
classical level, that case (i) is causal and case (ii) is not, whilst the fact, that case (iii) is 
causal, is implicit in their calculation for a symmetric second rank tensor external 
potential. 

3. Discussions and conclusions 

The theories considered in the previous section fall into three categories, (a), (b), (c), 
which are characterized by the following sets of properties. 

(a )  The classical theory is causal. In the corresponding quantized theory, xnI(n, x) 
is polynomial in both n, and the coupling to the external potential, the generalized 
Matthews' rule applies and the S operator is Lorentz invariant. 

(b) The classical theory is causal. In the corresponding quantized theory, YLqnt(n, x) 
is polynomial in n, but not in the coupling to the external potential, the generalized 
Matthews' rule does not apply, however the S operator is Lorentz invariant. 

(c) The classical theory is acausal. In the corresponding quantized theory, x n 1 ( n ,  x) 
is nonpolynomial in both n, and the coupling to the external potential, the 
generalized Matthews' rule does not apply and the S operator is not Lorentz 
invariant. 

At this stage, it should be asked, if the above categorization is of wider validity. 
This possibility may be examined by relaxing the restriction to nonderivative sources, 
and allowing a consideration of sources which are linear in the vector field and its 
first derivatives. Exactly the same methods as those used in Q 2 may be used for the 
discussion, and some results are merely quoted. 

It is found that the vector field with arbitrary magnetic dipole moment, which is 
given by (l), with T,,(x) proportional to the electromagnetic field-strength tensor, 
F,,(x), and with the replacement 8, + n, 8, + ie A,(x), A,(x)  the electromagnetic 
potential, falls into category (a). On the other hand, if an arbitrary electric quadrupole 
moment is included, by adding a nonvanishing term proportional to 

to the right-hand side of the field equation for the previous case, the resulting theory 
falls into category (c). The causal nature of the corresponding classical theories has 
been established by Vel0 and Zwanziger (1969b). 

In conclusion, the following remarks may be made. 
In all the examples considered here, the quantum theory, corresponding to a classical 

theory, which is causal in the sense of Vel0 and Zwanziger (1969a, b, 1971), is given in 
terms of an interaction hamiltonian, X'int(n, x), which is polynomial in n, and which 
leads, through Dyson's formula, to a Lorentz invariant S operator. On the other hand, 
the quantum theory, corresponding to an acausal classical theory, is, in all the examples 
considered here, given in terms of an interaction hamiltonian, which is nonpolynomial 
in n, and leads to an S operator which is not Lorentz invariant. There is no such 
intimate connection, between the causal nature of the classical theory, and the applic- 
ability of the generalized Matthews' rule in the corresponding quantum theory, as is 
evidenced by the results of 4 2. 

Finally, the above connections, between the causal nature of the classical theory 
and the Lorentz transformation properties of the S operator in the corresponding 
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quantum theory, and the former and the normal dependence of the interaction hamil- 
tonian in the corresponding quantum theory, are expected to remain valid for spins 
other than one, and when the source is only restricted to being polynomial in the 
quantized field and its derivatives. 
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